翻訳と辞書
Words near each other
・ 600-meter amateur radio band
・ 600-ship Navy
・ 6000 (number)
・ 6000 series
・ 6000 series (Chicago "L")
・ 60000 (number)
・ 60000 series
・ 6004th Air Intelligence Service Squadron
・ 6-Hydroxypseudooxynicotine dehydrogenase
・ 6-inch field howitzer M-1908
・ 6-inch gun M1897
・ 6-inch howitzer
・ 6-inch siege gun M1877
・ 6-inch siege gun M1904
・ 6-Isopropyl-6-nor-lysergic acid diethylamide
6-j symbol
・ 6-Ketoprogesterone
・ 6-MAPB
・ 6-MAPDB
・ 6-MeO-THH
・ 6-meter band
・ 6-Methoxymellein
・ 6-Methyl-MDA
・ 6-Methylenedihydrodesoxymorphine
・ 6-methylsalicylate decarboxylase
・ 6-methylsalicylic-acid synthase
・ 6-millimeter band
・ 6-Monoacetylcodeine
・ 6-Monoacetylmorphine
・ 6-Nitroquipazine


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

6-j symbol : ウィキペディア英語版
6-j symbol
Wigner's 6-''j'' symbols were introduced by Eugene Paul Wigner in 1940 and published in 1965. They are defined as a sum over products of four Wigner 3-j symbols,
:
\begin
j_1 & j_2 & j_3\\
j_4 & j_5 & j_6
\end
= \sum_ (-1)^
\begin
j_1 & j_2 & j_3\\
m_1 & m_2 & -m_3
\end
\begin
j_1 & j_5 & j_6\\
-m_1 & m_5 & m_6
\end
\begin
j_4 & j_5 & j_3\\
m_4 & -m_5 & m_3
\end
\begin
j_4 & j_2 & j_6\\
-m_4 & -m_2 & -m_6
\end
.

The summation is over all six allowed by the selection rules of the 3-j symbols.
They are closely related to the Racah W-coefficients, which are used for recoupling 3 angular momenta, although Wigner 6-j symbols have higher symmetry and therefore provide a more efficient means of storing the recoupling coefficients. Their relationship is given by:
:
\begin
j_1 & j_2 & j_3\\
j_4 & j_5 & j_6
\end
= (-1)^ W(j_1 j_2 j_5 j_4; j_3 j_6).

==Symmetry relations==
The 6-''j'' symbol is invariant under any permutation of the columns:
:
\begin
j_1 & j_2 & j_3\\
j_4 & j_5 & j_6
\end
=
\begin
j_2 & j_1 & j_3\\
j_5 & j_4 & j_6
\end
=
\begin
j_1 & j_3 & j_2\\
j_4 & j_6 & j_5
\end
=
\begin
j_3 & j_2 & j_1\\
j_6 & j_5 & j_4
\end
= \cdots

The 6-''j'' symbol is also invariant if upper and lower arguments
are interchanged in any two columns:
:
\begin
j_1 & j_2 & j_3\\
j_4 & j_5 & j_6
\end
=
\begin
j_4 & j_5 & j_3\\
j_1 & j_2 & j_6
\end
=
\begin
j_1 & j_5 & j_6\\
j_4 & j_2 & j_3
\end
=
\begin
j_4 & j_2 & j_6\\
j_1 & j_5 & j_3
\end.

These equations reflect the 24 symmetry operations of the automorphism group that leave the associated tetrahedral Yutsis graph with 6 edges invariant: mirror operations that exchange two vertices and a swap an adjacent pair of edges.
The 6-''j'' symbol
:
\begin
j_1 & j_2 & j_3\\
j_4 & j_5 & j_6
\end

is zero unless ''j''1, ''j''2, and ''j''3 satisfy triangle conditions,
i.e.,
:
j_1 = |j_2-j_3|, \ldots, j_2+j_3

In combination with the symmetry relation for interchanging upper and lower arguments this
shows that triangle conditions must also be satisfied for the triads (''j''1, ''j''5, ''j''6), (''j''4, ''j''2, ''j''6), and (''j''4, ''j''5, ''j''3).
Furthermore, the sum of each of the elements of a triad must be an integer. Therefore, the members of each triad are either all integers or contain one integer and two half-integers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「6-j symbol」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.